ASCIIMathML Formulae ==================== http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML] is a clever JavaScript written by Peter Jipsen that dynamically transforms mathematical formulae written in a wiki-like plain text markup to http://www.w3.org/Math/[MathML] markup which is displayed as standard mathematical notation by the Web Browser. See 'Appendix E' in the AsciiDoc User Guide for more details. The AsciiDoc `xhtml11` backend supports ASCIIMathML -- it links the ASCIIMathML script and escapes ASCIIMathML delimiters and special characters to yield valid XHTML. To use ASCIIMathML: 1. Include the `-a asciimath` command-line option when you run `asciidoc(1)`. 2. Enclose ASCIIMathML formulas inside math or double-dollar passthroughs or in math passthrough blocks. Here's the link:asciimathml.txt[AsciiDoc source] that generated this page. .NOTE - When you use the `asciimath:[]` inline macro you need to escape `]` characters in the formulas with a backslash, escaping is unnecessary if you use the double-dollar macro (for examples see the second formula below). - See the http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML] website for ASCIIMathML documentation and the latest version. - If the formulas don't appear to be correct you probably need to install the correct math fonts (see the http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML] website for details). - See the link:latexmathml.html[LaTeXMathML page] if you prefer to use LaTeX math formulas. A list of example formulas: - \$\$`[[a,b],[c,d]]((n),(k))`\$\$ - asciimath:[x/x={(1,if x!=0),(text{undefined},if x=0):}] - asciimath:[d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h] - +++`sum_(i=1)\^n i=(n(n+1))/2`\$+++ and *bold asciimath:[int_0\^(pi/2) sinx\ dx=1]* - asciimath:[(a,b\]={x in RR : a < x <= b}] - asciimath:[x^2+y_1+z_12^34] ********************************************************************* The first three terms factor to give asciimath:[(x+b/(2a))^2=(b^2)/(4a^2)-c/a]. asciimath:[x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a)]. Now we take square roots on both sides and get asciimath:[x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a)]. Finally we move the asciimath:[b/(2a)] to the right and simplify to get the two solutions: *asciimath:[x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)]*. *********************************************************************